Estimation and Test for Multi-Dimensional Regression Models

نویسنده

  • Joseph Rynkiewicz
چکیده

This work is concerned with the estimation of multidimensional regression and the asymp-totic behaviour of the test involved in selecting models. The main problem with such models is that we need to know the covariance matrix of the noise to get an optimal estimator. We show in this paper that if we choose to minimise the logarithm of the determinant of the empirical error covariance matrix, then we get an asymptotically optimal estimator. Moreover, under suitable assumptions, we show that this cost function leads to a very simple asymp-totic law for testing the number of parameters of an identifiable and regular regression model. Numerical experiments confirm the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Heritabilities and Genetic Correlations for Egg Weight Traits in Iranian Fowl by Multi Trait and Random Regression Models

Objective: The main objective of this research was estimation of genetic parameters for five consecutive measurements of egg weights in Isfahan fowl using multi trait model and random regression models. Methods: The statistical models included generation-hatch as a fixed effect, weeks of age as a covariate and additive genetic and individual permanent environmental effects as random effects. Th...

متن کامل

Heritabilities and Genetic Correlations for Egg Weight Traits in Iranian Fowl by Multi Trait and Random Regression Models

Objective: The main objective of this research was estimation of genetic parameters for five consecutive measurements of egg weights in Isfahan fowl using multi trait model and random regression models. Methods: The statistical models included generation-hatch as a fixed effect, weeks of age as a covariate and additive genetic and individual permanent environmental effects as random effects. Th...

متن کامل

Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images

Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Analysis of Test Day Milk Yield by Random Regression Models and Evaluation of Persistency in Iranian Dairy Cows

Variace / covariance components of 227118 first lactaiom test-day milk yield records belonged to 31258 Iranian Holstein cows were estimated using nine random regression models. Afterwards, different measures of persistency based on estimation breeding value were evaluated. Three functions were used to adjust fixed lactation curve: Ali and Schaeffer (AS), quadratic (LE3) and cubic (LE4) order of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008